Microfluidic devices integrating microcavity surface-plasmon-resonance sensors: glucose oxidase binding-activity detection.

نویسندگان

  • Dragos Amarie
  • Abdelkrim Alileche
  • Bogdan Dragnea
  • James A Glazier
چکیده

We have developed miniature (approximately 1 microm diameter) microcavity surface-plasmon-resonance sensors (MSPRS), integrated them with microfluidics, and tested their sensitivity to refractive-index changes. We tested their biosensing capability by distinguishing the interaction of glucose oxidase (M(r) 160 kDa) with its natural substrate (beta-D-glucose, M(r) 180 Da) from its interactions with nonspecific substrates (L-glucose, D-mannose, and 2-deoxy-D-glucose). We ran the identical protocol we had used with the MSPRS on a Biacore 3000 instrument using their bare gold chip. Only the MSPRS was able to detect beta-D-glucose binding to glucose oxidase. Each MSPRS can detect the binding to its surface of fewer than 35,000 glucose oxidase molecules (representing 9.6 fg or 60 zmol of protein), about 10(6) times fewer than classical surface-plasmon-resonance biosensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conv...

متن کامل

Glucose-Sensitive Holographic (Bio)Sensors: Fundamentals and Applications

Nowadays sensors and especially biosensors play an important role in medical diagnosis and detection of food and environment contaminations. Biosensors’ facilities have been improved significantly by using technologies such as surface plasmon resonance, microfluidics, laser, and electrochemistry. These technologies are now available on chips in micro- and nano-scale and are capable of mea...

متن کامل

Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip

A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann's configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to rea...

متن کامل

Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure ...

متن کامل

A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging

A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 2010